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ABSTRACT: The estimation of fatigue life is becoming a key issue for ageing railway bridge asset owners 
with regards to prioritizing maintenance, rehabilitation and replacement of existing structures. With increased 
volume of rail traffic, axle loads, train speeds, different locomotive/wagon configurations and the potential 
effects of resonance, understanding better the rate at which fatigue damage is being accumulated is of 
significant interest due to the complex nature and interaction of these loading phenomena with the bridge. 
Using the Euler-Bernoulli beam formulation for representing the bridge subjected to a series of moving loads, 
this paper presents a mathematical model which can be used to capture dynamic effects on fatigue damage 
accumulation. The model is demonstrated by assessing the dynamic response of a single span plate girder type 
bridge for different train loadings. The dynamic response from the analytical model is compared with 
dynamic amplification factors suggested by fatigue assessment codes. The results presented in this study show 
that fatigue damage can be significantly affected by the dynamic interaction between the trains and bridge. 
The model presented in this study can be used to quickly and efficiently gain key structural and fatigue life 
information to help in decision making for asset owners. 

1 INTRODUCTION 

1.1 Background 

Many railway networks throughout the world are having to support significant increases in capacity, raising 
serious structural concerns for ageing bridges. For all operational bridges there is an obligation for the asset 
owner to keep them structurally safe and in service as long as possible due to their economic and social 
function. The costs associated with the structural maintenance and replacement must be assessed taking into 
account the fatigue life of the bridge and potential risks of a structural failure. The prioritization of 
maintenance, and ultimately the replacement of these bridges, is now becoming an area of significant interest 
and activity. Part of this activity requires the estimation of the fatigue life of the bridge. Fatigue damage is 
accumulated on bridge structural members and connection due to the cyclic passage of trains. Reliable 
estimation of the fatigue life of a bridge requires knowledge of the damage already accumulated, which for 
many ageing bridges can be difficult to determine, and future damage from modern trains.  

Fatigue damage accumulation on a bridge is affected by the number and magnitude of the cyclic stress 
ranges induced by train passages. However, with increased axle loads, volume of traffic and train speeds the 
rate at which damage is being accumulated has increased. The problem is further exacerbated by the dynamic 
effects of the train-bridge interaction, a problem that is more pronounced for high speed trains, as this may 
induce resonance effects and greater dynamic impact for the bridge. Current bridge design codes consider 
dynamic effects by scaling the results of a static analysis to envelope dynamic effects with a parameter known 
as the Dynamic Amplification Factor (DAF). The expressions that calculate DAFs were originally obtained 
by empirical means from the results of field tests on specific bridges under a range of velocities, providing 
global DAF values that are functions of the bridge/member span. Developing analytical models capable of 
accurately predicting DAFs will allow for a wider range of bridge types and configurations as well as a wide 
range of train velocities and train axle configurations to be captured. Previous studies carried out on truss 
bridges, in the form of detailed dynamic analyses, showed that the code-defined DAFs may be overly 
conservative in some cases whilst in other cases it may underestimate the dynamic effects (Imam & Yahya, 
2014). Without an accurate estimation of the DAF any fatigue calculations may be subject to uncertainties due 
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to their sensitivity to member stress levels. An overestimation may lead to operational safety concerns whilst 
an underestimation could mean untimely maintenance, replacement and expenditure for the asset owner. With 
the railway industries under challenging financial and budgetary constraints, as well as the complications of 
the management of the rail networks, there is now greater emphasis placed upon engineers to be able to 
accurately assess and establish the remaining fatigue life of bridges.  

The aim of this paper is to address the shortcomings in the current bridge design/assessment codes by 
developing an analytical model by which fatigue damage can be estimated by explicitly taking into account 
the dynamic response of the bridge and the different train configurations and velocities that may operate on a 
network. 

2 MOVING LOAD MODEL & DYNAMIC AMPLIFICATION 

2.1 Historical Development of the Moving Load Model 

The first investigations of railway bridge vibrations under moving loads date back to the middle of the 
19

th
century (Garg & Dukkipati, 1984). Contributions by Willis (1849), Stokes (1867) and Robinson (1887) on 

the dynamic response of bridges as a result of a moving load were amongst the first which paved the way for 
later engineers to investigate this phenomenon in more detail. It was the collapse of Dee Bridge in Chester 
(UK) in 1847 that led to Willis and Stokes to focus on the investigation of the dynamic stresses in beams 
under moving loads (Karnovsky, 2012). The moving load problem was formulated by Willis and later solved 
by Stokes in 1849. The basic formulation of the problem on which the early investigations were based upon 
were on the moving load and moving mass models. These models were subsequently extended to include the 
inertia of the beam which represented the bridge. The difficultly of solving these models mathematically 
increases when the inertia of the force and the beam are considered.  

The moving force model is a relatively straight forward computation and this formulation was solved by 
Winkler and Mohr independently in 1868 (Karnovsky, 2012). The moving mass model, known as the Willis-
Stokes problem, was first formulated by Willis in 1849 and subsequently solved by Stokes. By neglecting the 
beam’s mass, Willis (1849) arrived at a fourth order partial differential equation representation of the 
problem. During the period of 1900-1940, railway bridge dynamic investigations mainly focused on 
developing analytical and approximate solutions to simplified dynamic problems. Prominent researchers 
investigating vibrations associated with moving loads during this time included Jeffcott (1929), Lowan (1935) 
and Inglis (1934) who provided a general treatment on the dynamics of railway bridges. Inglis used the 
method of harmonic analysis for assessing the dynamic response of railway bridges due to the distributions of 
moving loads in the form of concentrated forces, sprung and un-sprung masses and harmonic forces acting on 
a beam.  

With the development of digital computers from the 1940’s more complex and realistic models, 
comprising both bridge and trains, started to be formulated by researchers (Fryba, 1999). Fryba made 
significant contributions in the subject area of vibration of solids under moving loads. He provided a 
comprehensive theoretical formulation of the moving load problem acting on elastic and inelastic solids 
which included beams during the 1960’s. The moving load problem was again reviewed by Fryba in the 
1970s and 1990s and enabled other researchers in the field, most notably Yang et al (2004), to apply and 
expand on Fryba’s closed form analytical formulations in understanding railway bridge dynamic problems. 
Yang, principally focusing on high-speed railway bridges, provides a broad and systematic assessment on the 
problem of moving loads but also including the train interaction dynamics with the bridge. The works of 
Fryba are provided in his book which entirely deals with the subject of moving loads (Fryba, 1999). The 
mathematical model of the moving load problem by Fryba (1999) is utilised in this work and extended to 
present a more comprehensive model that accounts for different bridge and train configurations as well as 
incorporating a fatigue damage model. 

2.2 Evolution of the Dynamic Amplification Factor 

The dynamic amplification factor (DAF) is defined as the ratio between the dynamic and static responses.  In 
the available literature, the DAF is referred to by a number of other terms such as impact factor, impact 
coefficient and dynamic magnification factor. Estimation of the DAF depends on a number of parameters, 
which includes; the span, self-weight of the bridge and train speed amongst others. Many early bridge design 
codes empirically relate the DAF to a single parameter of the bridge, either the span of the bridge or its 
resonant frequency. This was the basis by which a global dynamic amplification factor (DAF) was calculated.  
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Three of the most significant works on the investigation of bridge impacts due to the interaction of trains 
were performed in the early part of the 20

th
 century (Looney, 1944). These were considered to be the first 

investigations which specifically studied impact for the purposes of introducing impact allowance factors in 
the bridge design codes. These investigations also paved the way for other future investigations on the 
subject. The first study was performed in the US by the sub-committee of the American Engineering 
Association who were tasked with the investigation of the various factors which contributed to impact. The 
study was based on a series of field tests measuring deflections on bridges using trains running at different 
speeds. This study culminated in the establishment of the empirical formulas for calculating impact allowance 
factors that were introduced into the American bridge design codes.  

2.3 Current Bridge Design Code Dynamic Amplification 

The calculation of DAFs is specified for fatigue limit states in the Network Rail (2006) assessment codes for 
the assessment of bridges in the UK. The calculation method given in the Network Rail assessment code, 
adopted in this study, provides a distinction between longitudinal and transverse members. For fatigue 
calculations the dynamic increment,for bending of a longitudinal member is given by the same equations as 
given in Eurocode 1, except for the calculation of the parameter kfor the basic dynamic increment,  and the 
increment for the track irregularity, . The procedure for calculating the DAF is as follows: 

𝑘 =  
𝑣

4.47𝐿Φ 𝜂𝑜
  (1) 

The basic dynamic increment, 𝜙′and increment for track irregularity, 𝜙′′  are given by: 

𝜙′ =  
𝑘

1−𝑘+𝑘4    𝑎𝑛𝑑     𝜙′′ = 𝛼  56𝑒
− 

𝐿Φ
10

 
2

+ 50  
𝐿𝜂𝑜

80
− 1 𝑒

− 
𝐿Φ
20

 
2

    𝑏𝑢𝑡 > 0  (2) 

Where =0.002v but not >0.01 and v is the train speed in mph, which is normally taken as the permissible 
speed for the bridge. The determinant length is given by L and L is the span of the bridge member (centre-to-
centre of supports) in metres and 𝜂𝑜  is the fundamental natural frequency of vibration in Hertz of the 
structural member based on o resulting from the uniformly distributed self-weight deflection, w.  

𝜂𝑜 =  
17.75

 𝛿𝑜
     𝑤𝑒𝑟𝑒  𝛿𝑜  𝑖𝑠 𝑖𝑛 𝑚𝑚 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦  𝛿𝑜 =  1000

5𝑤𝐿4

384𝐸𝐼
  (3) 

In equation (3) EI is the flexural rigidity of the bridge. The upper and lower bounds of the natural frequency 
𝜂𝑜  are estimated as follows with the DAF calculation for bending given by equation (5). 

𝜂𝑜 =  94.76𝐿−0.748     (𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑)  (4) 

𝐷𝐴𝐹𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =  1 + 0.5  𝜙′ +
𝜙 ′′

2
   (5) 

Using the above methodology, the dynamic amplification for a bridge span of 18.1m is plotted against the 
train speed in Figure 1. The average train speed on UK networks is around 95-105km/h but passenger trains 
have now been introduced with speeds of up to 201km/h on various mainlines(Gaillard, 2003). Based on the 
DAF curve of Figure 1 for a bridge span of 18.1m the amplifications can vary from 1.065 at 50km/h to 1.143 
at 105km/h and to 1.333 at 201km/hr. 

3 STATIC AND DYNAMICMOVING LOAD MODELS 

3.1 Introduction 

The representation of the train bridge interaction as a series of moving loads, as depicted in Figure 2, 
represents the main challenge in the formulation of the analytical model for both the static and dynamic cases. 
In the static case, the inertia of the beam is neglected and therefore the response of the beam is not accounted 
for in the calculation of the deflection, bending moment and stresses. The analytical model presented in this 
paperis created using MATLAB. 

In both the static and dynamic analysis, the axle loads and the position of each axle are defined in terms of 
two row vectors as follows.  

𝐹𝐷 = [ 𝐹1𝐹2 … … … …… 𝐹𝑛 ]     and    𝑋𝐷 = [ 𝑋1𝑋2 …… … … … 𝑋𝑛]  (6) 
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Figure 1. Dynamic amplification factor (DAF) based on Network Rail Code (2006). 

 

 
 

Figure 2. Bridge rain interaction model. 

 

 

The distance 𝑋 is defined from the first axle which is placed at positionx=0 on the bridge. A time increment,  
Tinc is defined for the analysis. The incremental marching step for the train is defined using the velocity of the 
train in m/s, Linc= vTinc. For the static analysis the bridge span is divided into equal increments of Linc giving 
the following incremental positions on the bridge. 

𝑋𝑏𝑟 = [ 𝑥1𝑥2 … … …… … 𝑥𝑛 ]  (7) 

The analytical model requires the distances of each axle to be equally spaced. This is achieved by introducing 
dummy axle distances at increments of Linc between the existing defined axles. An axle force of zero is 
assigned at these dummy axle positions. As this has introduced additional axle loads and distances new 
position and load row vectors are thus defined. The following other parameters are defined for the analytical 
model. 

𝑋𝑡𝑜𝑡 =  𝑋𝑛 + 𝐿                            𝑇𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛 𝑝𝑙𝑢𝑠 𝑏𝑟𝑖𝑑𝑔𝑒   (8) 

𝑡𝑐𝑟𝑜𝑠𝑠 =
𝑋𝑡𝑜𝑡

𝑣
                                𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑐𝑟𝑜𝑠𝑠 𝑏𝑟𝑖𝑑𝑔𝑒 𝑏𝑦 𝑡𝑟𝑎𝑖𝑛  (9) 

𝑡 =  𝑡1𝑡2 … … … … 𝑡𝑗                  𝑇𝑖𝑚𝑒 𝑎𝑟𝑟𝑎𝑦 𝑎𝑡 𝑇𝑖𝑛𝑐  𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑤𝑒𝑟𝑒 𝑡𝑗 = 1.5𝑡𝑐𝑟𝑜𝑠𝑠    (10) 

𝑡𝑛 =  
𝑋𝐷 ,𝑛

𝑣
                                    𝑇𝑖𝑚𝑒 𝑤𝑒𝑛 𝑡𝑒 𝑁𝑡  𝑓𝑜𝑟𝑐𝑒 𝑒𝑛𝑡𝑒𝑟𝑠 𝑡𝑒 𝑏𝑟𝑖𝑑𝑔𝑒  (11) 

𝑇𝑛 =  
(𝐿+𝑋𝐷 ,𝑛 )

𝑣
                             𝑇𝑖𝑚𝑒 𝑤𝑒𝑛 𝑡𝑒 𝑁𝑡  𝑓𝑜𝑟𝑐𝑒 𝑙𝑒𝑎𝑣𝑒𝑠 𝑡𝑒 𝑏𝑟𝑖𝑑𝑔𝑒  (12) 

𝑥𝑛 =  𝑣𝑡 −  𝑋𝐷,𝑛                    The position of the n
th
 axial force, 𝐹𝐷,𝑛   (13) 

𝑇𝑛 =  
 𝐿+𝑋𝐷 ,𝑛  

𝑣
                            𝑇𝑒 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡𝑒 𝑛𝑡 𝑎𝑥𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒, 𝐹𝐷,𝑛   (14) 
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The position of the first axial at x=0 (reference point at the entry point of the bridge) isXD,1=0. The above 
formulations are based on the axles being equi-distance apart with dummy loads. This method facilitates the 
assessment of real trains which may have varying axle distances.  

3.2 Moving Load Model Based on Classical Beam Bending Theory 

For comparison purposes the deflection and stresses are calculated for a bridge main longitudinal beam based 
on a static analysis using classical beam equations and employing the principle of superposition. Using this 
type of analysis, the stresses are then scaled using a dynamic amplification factor, DAF, which is calculated 
using the Network Rail bridge assessment code, as discussed above, to account for dynamic effects. This is 
referred to as a quasi-static (q-static) case in this work. The bending moment of the bridge at a point at a 
distance a from the end of the beam, which in this study is at the position of the mid-span or 0.5L, is 
calculated using equation (15) where 𝑥 is the position of the moving force given by x=vt and P is a unit load. 
The equation effectively creates the bending moment influence lines for the member under consideration. 

𝑀𝑏𝑟 ,𝑥 =    
𝑃𝑥(𝐿−𝑎)

𝐿
 𝑥 < 𝑎  

𝑃𝐿

4
 𝑥 = 𝑎  

𝑃𝑎(𝐿−𝑥)

𝐿
 𝑥 > 𝑎  𝑥=𝐿

𝑥=0   (15) 

For the series of axle loads crossing the bridge the total bending moment is given by equation (16) where NXD 

is the total number of axles, including dummy axles, and Nbr is the total bridge span distance increments. 

𝑀𝑠𝑡𝑎𝑡𝑖𝑐 ,𝑡 =    𝐹𝑗 𝑀𝑏𝑟
𝑗 +𝑁𝑏𝑟
𝑗 +1

𝑁𝑋𝐷
𝑗 =1    (16) 

By applying the DAF the static analysis stress time history is converted to a dynamic stress time history. 

𝜎𝑞𝑠𝑡𝑎𝑡𝑖𝑐 ,𝑡 =  𝐷𝐴𝐹 ×
𝑀𝑠𝑡𝑎𝑡𝑖𝑐 ,𝑡𝑦 

𝐼
  (17) 

where 𝑦  is the distance from the neutral axis to the outer fibre of beam and I is the second moment of area. 

3.3 Bridge Train Interaction Model for Moving Loads Using Euler-Bernoulli Beam Theory 

This analytical formulation of the problem is based on the extended classical Euler-Bernoulli beam model 
presented by Fryba (1999) for a series of moving loads, given in equation (18). 

𝐸𝐼 
𝜕4𝑦 𝑥 ,𝑡 

𝜕𝑥4 + 𝜇 
𝜕2𝑦 𝑥 ,𝑡 

𝜕𝑡2 + 2 𝜇 𝜔𝑑
𝜕𝑦  𝑥 ,𝑡 

𝜕𝑡
=  𝜀𝑛 𝑡  𝛿  𝑥 − 𝑥𝑛  𝐹𝑛

𝑁
𝑛=1   (18) 

Fryba (1999) provides the closed form solution of equation (18) in the time domain which enables the 
calculation of the bending moment at a specific location x along the bridge, given by equation (19). The 
closed form solutions introduces the Heaviside Step Function H(t), equation (20) and the Dirac Delta 
Function(x) which is a derivative of H(t). The Dirac Delta Function, also known as the ‘Unit Impulse 
Function’, (t)is used to model the density of an idealized point mass (single concentrated axle load in this 
case) as a function that is equal to zero everywhere (where  t0) except for zero (t=0) where it is infinite, and 
whose integral over the entire real line is equal to unity (Bracewell, 2000). 

𝑀(𝑥, 𝑡) =   𝑀0 𝐹𝑛 𝑗3𝜔𝜔1
2  𝑓  𝑡 − 𝑡𝑛 𝐻 𝑡 − 𝑡𝑛 −  −1 𝑗  𝑓  𝑡 − 𝑇𝑛 𝐻 𝑡 − 𝑇𝑛  𝑠𝑖𝑛

𝑗𝜋𝑥

𝐿
𝑁
𝑛=1

∞
𝑗 =1   (19) 

Where 

𝜀𝑛 𝑡 = 𝐻 𝑡 − 𝑡𝑛 − 𝐻 𝑡 − 𝑇𝑛   (20) 

𝑓 𝑡 =  
1

𝜔 𝑗
′  𝐷

 
𝜔 𝑗

′

𝑗  𝜔
 𝑠𝑖𝑛 𝑗𝜔𝑡 +  𝜃 + 𝑒−𝜔𝑑  𝑡  𝑠𝑖𝑛 𝜔𝑗

′  𝑡 +  𝜑    (21) 

In equation (19), Mo is the unit load (1ton) bending moment at the mid-point position of a simply supported 
bridge given by equation (22). 

𝑀0 =
𝑃𝐿

4
  (22) 

The natural frequencies, i and  fi and the damped vibration frequency, d are given as follows. 

𝜔𝑗 =  
𝑗 2𝜋2

𝐿2  
𝐸 𝐼

𝜇
,   𝑗 = 1,2,3, … ,   𝑎𝑛𝑑   𝑓𝑗 =   

𝜔 𝑗

2𝜋
, 𝑗 = 1,2,3, … , 𝑎𝑛𝑑  𝜔𝑑 =  𝑓1𝜗     (23) 

where f1 is the first fundamental natural frequency of vibration and  is the dimensionless logarithm 
decrement, which for steel railway bridges is given by 1/(0.3L-0.0012L

2
) (Fryba, 1999).The mode shape of 
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the bridge for the jth non-damped vibration mode is given by the term sin(jx/L) in equation (19).Other 
parameters of the mathematical model include the following (Fryba, 1999). 

𝜔′𝑗 =   𝜔𝑗
2 − 𝜔𝑑

2         𝑎𝑛𝑑           𝐷 =    𝜔𝑗
2 − 𝑗2𝜔2 

2
+ 4𝑗2𝜔2𝜔𝑑

2   (24) 

𝜃 = tan−1 −2𝑗𝜔 𝜔𝑑

𝜔′ 𝑗
2+𝜔𝑑

2−𝑗 2𝜔2  ,   𝜑 = tan−1 2𝜔𝑑𝜔′ 𝑗

𝜔𝑑
2−𝜔 ′

𝑗
2

+𝑗 2𝜔2
, 𝛼 = φ + tan−1 2𝜔𝑑𝜔′ 𝑗

𝜔 ′
𝑗
2
−𝜔𝑑

2   (25) 

The dynamic tensile stress on the outer fibre of the I-Beam is obtained by: 

𝜎𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ,𝑡 =  
𝑀𝑥 ,𝑡𝑦 

𝐼
𝑦   𝑖𝑠 𝑡𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡𝑒 𝑜𝑢𝑡𝑒𝑟 𝑓𝑖𝑏𝑟𝑒 𝑓𝑟𝑜𝑚 𝑡𝑒 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑎𝑥𝑖𝑠  (26) 

I is the second moment of area. When the train traverses the bridge, this results in the initial deflection of the 
bridge and the oscillations then occur about a mean position. As the fatigue S-N curves are given for zero 
mean stress conditions then the Goodman’s relationship is used to take into account the effect of mean stress. 
Using a rain-flow counting algorithm within MATLAB the stress time histories are converted into a stress-
range time history. This operation also gives the mean stress for each cycle count. The stress after Goodman 
correction is given by, 

𝜎𝑒 ,𝑖 ,𝑠𝑡𝑎𝑡𝑖𝑐 /𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =  
𝜎𝑟 ,𝑖 ,𝑞𝑠𝑡𝑎𝑡𝑖𝑐 /𝑑𝑦𝑛𝑎𝑚𝑖𝑐

1− 
𝜎𝑚 ,𝑖
𝜎𝑈𝑇𝑆

 
  (27) 

Where, 𝜎𝑚 ,𝑖 is the mean stress and 𝜎𝑈𝑇𝑆  the ultimate tensile strength of the beam. The number of cycles to 
failure can then be calculated from equation (28), where m is the slope of the region of the S-N curve and 
depends on the stress range. Where the stress range is >om=3.5, and for stress range <o, slope = m+2. The 
stress range, o, is the constant amplitude fatigue limit of the detail under consideration.  

𝐿𝑜𝑔(𝑁𝑓 ,𝑖 ,𝑞𝑠𝑡𝑎𝑡𝑖𝑐 /𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ) =  𝐿𝑜𝑔 𝐾𝑜 + 𝑑𝐿𝑜𝑔 ∆ − 𝑚𝐿𝑜𝑔(𝜎𝑒,𝑖 ,𝑞𝑠𝑡𝑎𝑡𝑖𝑐 /𝑑𝑦𝑛𝑎𝑚𝑖𝑐 )  (28) 

For this assessment BS-5400 fatigue Class C is used for damage calculation with the following parameters, 
 
Ko = 1.0810

14
 Constant term relating to the mean-line of the statistical analysis results 

m = 3.5  Inverse slope of the mean-line log r – Log(N) curve 
 = 0.625 The reciprocal of the anti-log of the standard deviation of Log(N) 
d = 2  The number of standard deviations below the mean-line 
 
For Class C, o= 78.2MPa.The cumulative damage index (CDI) is now calculated using Miner’s rule.  

𝐶𝐷𝐼𝑞𝑠𝑡𝑎𝑡𝑖𝑐 /𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =    
𝑛𝑖 ,𝑞𝑠𝑡𝑎𝑡𝑖𝑐 /𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝑁𝑓 ,𝑖 ,𝑞𝑠𝑡𝑎𝑡𝑖𝑐 /𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝑎𝑐𝑐
𝑖=1   (29) 

A fatigue failure is deemed to occur when the value of CDI  1.0. The fatigue life, based on a total annual 
cycle count(acc) is given by the reciprocal of equation (29) where fatigue life in years =  1/CDI. 

4 MOVING LOAD DYNAMIC ANALYSIS OF A PLATE GIRDER BRIDGE 

4.1 Introduction 

The analytical model described in the previous section was implemented within MATLAB. The model 
facilitates the addition of any number of bridges and different train types in a standard format. The standard 
set of train mixes defined in BS 5400 (1980) were included within the model, enabling the selection of any 
one type of train for assessment. The code defines a standard set of mixes for fatigue assessment; Light, 
Medium and Heavy traffic types. For this assessment the medium traffic type is used which consists of Train 
Nos. 1, 5, 7 and 8 with total annual frequencies as highlighted in Table 1. 

The model only considers the primary vertical bending mode of the bridge, which in most cases, is the 
most critical mode for fatigue assessment. This simplifies the bridge input data to only providing the span 
(L),Young’s Modulus (E) and Second Moment of Area (I). A damping ratio() may also be inputted if this 
information is available, otherwise damping is calculated using the empirical method given by Fryba (1999). 
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Table 1. BS-5400 (1980) standard train mixes. 

 

4.2 Candidate Half-Through Plate Girder Bridge 

The case study bridge selected for fatigue damage assessment is an 18.1m span half-through plate girder 
railway bridge as shown in Figure 3(Gaillard, 2003). The bridge is constructed with two main longitudinal 
steel girders and steel transverse cross-girders encased in concrete fill. The transverse girders bear onto the 
main girder bottom flanges. The bridge supports a single, centrally located track and has a span which is 
representative of typical medium span bridges on the UK railway network.  
 

 

 
 

Figure 3. Half-through deck plate girder railway bridge used as case study (Gaillard, 2003). 

4.3 Bridge Response Results & Discussion 

The stresses are calculated on the outer fibre of the main longitudinal girders and the response for each train 
type is shown in Figure 4. To account for dynamic effects in the quasi-static (q-static) analysis the static 
stresses have been multiplied with the calculated Dynamic Amplification Factor (DAF) 1.065 at 50km/h. The 
results show that peak responses are marginally higher than for the dynamic case Train 1, indicating that the 
use of the DAF results in a more conservative result for this train. When the locomotive axle loads are higher 
than the wagon axle loads, typical of passenger trains, this results in the first stress peak being higher as 
shown in Figure 4 for Trains 5 and 8. It is interesting to note that for Train 8, which has two-axle wagons 
following the locomotive, the stress variation is relatively lower as compared to the other trains.  
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Figure 4. Bridge stress-time response for different trains comparing static versus dynamic analyses. 

 

 

Using the Rainflow technique in MATLAB the stress-time histories of Figure 4 are converted into stress 
range histograms which are then used to perform the Miner’s Cumulative Damage Index calculations. The 
results of the Cumulative Damage Index (CDI) calculations for train speeds up to 200km/h for each train type 
are shown in Figure 5. As expected, the CDI for purely a static loading case, where no DAF is applied results 
in a nearly constant CDI throughout the speed range. When the DAF is applied to the static stresses then the 
CDIs increase with speed, but no resonance effects are observed as this analysis does not capture the dynamic 
response of the bridge explicitly. For the dynamic case, the results show that the CDIs are generally lower 
than their quasi-static counterparts, except when the condition of resonance occurs, which are indicated by the 
spikes in the CDI curves. For Trains 1 and 5 resonance conditions at 170km/h and 190km/h are apparent. 
Train 7 indicates two resonance conditions, one at 120km/h and the other at 180km/h. Train 8 shows a 
resonance condition at 170km/h. At train speeds where resonance conditions may occur the CDI values are 
shown to be significantly higher as compared to other speeds. 

Figure 6 shows the response plots for Train 7 at speeds which cause a resonance condition, clearly showing 
considerable amplification of the stress levels. The quasi-static response using a DAF is incapable of 
capturing resonance effects thus leading to potential under-estimation of fatigue life. 

A summary of the Cumulative Damage Index and fatigue life for the Medium Traffic load model 
consisting of Trains 1, 5, 7 and 8 are shown in Table 2 for both the quasi-static (top) and dynamic (bottom) 
analysis. The results are given for three speeds, 50 km/h, 70 km/h and 120 km/h. For both analyses, the 
fatigue life is can be seen to reduce for increasing speeds. At 50 km/h the fatigue life obtained by dynamic 
analysis is found to be 8.7% higher than that of an equivalent quasi-static analysis. Similarly, at 70km/h the 
fatigue life is found to be higher by 18% given by the dynamic analysis. However, if trains are operated at 
conditions of resonance then there is a significant reduction in the fatigue life. At 120 km/h, it can be seen that 
the fatigue life given by the dynamic analysis is significant lower (40%) than its quasi-static counterpart 
clearly demonstrating the inability of DAFs capturing such resonance dynamic effects on fatigue damage.  
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Figure 5. Bridge cumulative fatigue damage vs train speed for single train passages of 4 medium traffic trains. 

 

 
Figure 6. Bridge stress response at resonance conditions for Train 7. 

 

Table 2. Comparison of fatigue cumulative damage index between quasi-static and dynamic analyses.  
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5 CONCLUSIONS 

In this paper an analytical model, using the Euler-Bernoulli Beam (EBB) formulation, has been presented for 
estimating the fatigue damage accumulation on a plate girder railway bridge due to the dynamic interaction 
effects of the bridge and train. The model has been presented in a generalised form and implemented within 
MATLAB, enabling a wide range of bridge and train configurations to be assessed. A single span plate girder 
bridge was used to estimate the damage accumulation using the Medium Train Mix defined in BS-5400 
(1980), as a case study. Results have also been presented for a quasi-static based analysis, whereby the static 
stress-time history is multiplied by the code-estimated DAF. The main conclusions from this study are as 
follows. 
 
 In the quasi-static analysis (DAF applied), fatigue damage accumulation increases with speed and is 

generally higher than that estimated through a dynamic analysis when speeds are not close to a resonance. 
 Dynamic analyses showed that at resonance conditions significant fatigue damage accumulation can result. 

For this particular case study bridge, for train speeds of 120km/h the fatigue life estimated is 40% lower 
than the equivalent damage estimated through the use of DAFs, due to resonance effects of Train 7. 

 Where trains are not operating at or near any resonance conditions, the dynamic analysis results in longer 
fatigue life estimates as compared to quasi-static analysis using a DAF. At 50km/h and 70km/h the 
dynamic analysis results in 8.7% and 18.3% higher fatigue lives, respectively. 
 

The results of this study have shown that the application of DAFs on static stress histories can be overly 
conservative giving a lower fatigue life estimate. The dynamic analysis has shown that at resonance 
conditions significant reductions in fatigue life can be expected. However, away from this condition, the 
dynamic analysis is shown to give higher life estimates than for a quasi-static type analysis. The results from 
this study can be useful for bridge asset owners for assessment and management of bridges assets, giving 
them the means to identify optimal train speeds for given train configurations to maximise fatigue life. 
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