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ABSTRACT: Considering the several ways in which riprap protection at bridge piers can fail, a practical 
design requires evaluation of the following three items: 1) The maximum depth of general scour around the 
pier, including an assessment of the fluctuations of the bed level caused by migrating bedforms (e.g., dunes) 
past the pier, 2) the size of the stone needed to resist the hydrodynamic forces of water flowing around the 
pier, and 3) the extent and thickness of the riprap blanket placed around the pier. Here the second and third 
design elements are the center of interest. First, a rational expression is developed for calculating the 
representative diameter of stable loose stone placed around bridge piers based mainly on potential flow 
theory. Stability is determined from the ratio of static moments resisting and promoting overturning of a 
single rock particle, which defines a safety factor. Second, a mathematical model of the deployment of rock 
riprap falling aprons at bridge piers is developed based on a conceptual kinematic representation of apron 
formation. 

1 INTRODUCTION 

The most widely used method for protecting bridge piers against scour consists of placing loose rocks on the 
surrounding streambed. The process works well, with little loss or subsidence of the stones if the riprap is 
sized and installed correctly. However, riprap placed around bridge piers to guard against scour does fail. 
Experimental studies have identified the following ways in which that happens: 
 
1. Shear failure caused by stones not being able to resist the hydrodynamic forces imparted by the stream 

flow. 
2. Winnowing failure caused by erosion of underlying soils through the porous protective layer from the 

effects of flow turbulence and seepage. 
3. Edge failure caused by erosion at the periphery of the riprap apron, which does not extend far enough 

horizontally to prevent scour, and which is not capable of deploying and armoring the slopes of the 
resulting scour-hole. 

4. Bed form undermining caused by dunes migrating past the protective layer and eroding beneath the edge of 
the apron. 

 
Considering the several ways in which riprap protection at bridge piers can fail, a practical design requires 
evaluation of the following three items: 
 
1. The maximum depth of scouring around the pier, including an assessment of the fluctuations of the bed 

level caused by migrating bed forms (e.g., dunes) past the pier. 
2. The size of the stone needed to resist the hydrodynamic forces of water flowing around the pier. 
3. The extent and thickness of the riprap blanket placed around the pier. 
 
Here the second and third design elements are the center of interest. First, a rational expression is developed 
for calculating the representative diameter of stable loose stone placed around bridge piers based mainly on 
potential flow theory. Stability is determined from the ratio of static moments resisting and promoting 
overturning of a single rock particle, which defines a safety factor. Flow velocities and the shear stresses they 
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produce are found from a combination of empirical relations and theoretical solutions of the two-dimensional 
flow field around a cylindrical column.  

Second, a mathematical model of the deployment of rock riprap falling aprons at bridge piers is developed 
based on a conceptual kinematic representation of apron formation. The model, which is founded on results of 
scale-model experiments of falling apron behavior and on practical experience that has influenced current 
design theory, accounts for the regularly repeated processes of slope erosion followed by rock settlement that 
takes place along a receding convex, conical underwater slope. Apron parameters that are quantified include 
the needed thickness of a horizontal riprap layer, the amount of stone lost during deployment, and the lateral 
extent of erosion before complete slope coverage is established. The model is straightforward and can be 
applied without difficulty to design rock riprap falling aprons used to counteract the threat of bridge pier and 
abutment undermining by scour. 

 

 

 
 
Figure 1. Schematic of the problem of sizing rock riprap to protect a bridge pier. 

2 SIZING STABLE ROCK RIPRAP 

The general problem of sizing rock riprap to protect a bridge pier is illustrated in Figure 1. The ratio of static 
moments resisting and promoting overturning of a single rock particle on the side of a riprap mound defines 
the stability safety factor fs. For small longitudinal channel and water-surface slopes, Froehlich (2013b) 
calculates fs as follows: 
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  the shear stress acting on the rock riprap, Sr = ρr/ρ = the rock specific gravity, ρr =the rock mass density, ρ 
=the mass density of the ambient fluid (which is considered to be water), g = gravitational acceleration, Dr = 
the representative rock riprap particle (usually Dr = D50 = median intermediate diameter of rocks in a riprap 
mixture),  the side slope angle of the riprap cover, r  the rock riprap mass angle of repose, and *co  the 
dimensionless critical shear stress for a horizontal bed or Shields’ parameter (Vanoni 1977), which is 
approximately 0.06 for turbulent flows (Anderson 1961). The parameter  = the angle of rock movement 
along the slope with respect to horizontal, and the parameter o  the particle stability number for flat surfaces 
and small water-surface slopes, which represents the ratio of shear stress to critical shear stress on a horizontal 
bed multiplied by the relative difference in the mass density of the riprap and the ambient fluid. 

Derivation of Eq. (1) departs from the conventional approach, which is described by Stevens et al. (1976) 
and Julien (1998), because the buoyant force is not subtracted from the gravitational force to obtain the 
submerged weight of a particle, which is considered to be a destabilizing force. Instead, the buoyant force is 
treated separately, and it is split into distinct components that resist and promote overturning, like the 
conventional treatment of submerged particle weight. A consistent stability factor, which has an upper limit of 
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Sr, results when gravitational and buoyant forces are considered in this way. As a result, the upper bound of fs 
increases in a logically consistent manner as ρ decreases in comparison to ρr. 

A relation for τ needed to calculate the size rock that will resist overturning moments is provided by 
Manning’s formula (Chow 1959), which is uncomplicated and accepted widely. Combining it with Maynord’s 
(1991) expression for Manning’s roughness coefficient n for rock riprap as a function of Dr gives τ as 
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where y = water depth, V = depth-averaged velocity, and /Fr V gy  Froude number of the flow. The 
shape and angularity of rock is also a factor that affects particle stability and flow resistance. The effect of 
rock angularity is accounted for by specified values of the mass angle of repose, r, which is higher for 
angular rock than rounded rock. From measurements of stockpiled stone, Froehlich (2011) finds that 
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A comparison of measured rock sizes from several small-scale laboratory studies to diameters calculated by 
Eqs. (1) through (4) shows that a safety factor fs = 1.25 provides an acceptable margin of error needed for 
design. 

2.1 Potential Flow around Bridge Piers 

Calculation of ηo by Eq. (4) requires an appropriate velocity in the vicinity of a pier. Here V is estimated using 
theoretical expressions for two-dimensional, incompressible, inviscid, irrotational flow (that is, potential flow) 
about solid bodies. A circular cylinder in an unbounded uniform flow is used as an elementary bridge pier 
against which solutions for piers under other conditions and of different shapes will be compared. The 
potential flow stream function provides the average velocity within a distance 2r b  adjacent to a circular 
cylinder  ( ) ( / 2) / ( / 2)V r b r b    . The maximum average speed within a distance r = Dr adjacent to a 
column of a circular cross-section in a uniform flow as shown in Figure 2 occurs along sides and is calculated 
as 

1
1 1

2
a

r r

b b
V V

D D

    
      

    
 (6) 

where Va = a uniform approach flow velocity. The value V is the depth-averaged velocity acting on a stone 
and is used to calculate the particle stability number o. The maximum theoretical speed along the boundary 
of a circular cylinder is twice the uniform flow velocity. 

Combining Eqs. (1), (3), (4), and (6) gives the following analytical expression for the stable value of Dr at 
the base of the circular pier: 
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Figure 2. Streamlines around a single unbounded circular column in a uniform flow of velocity Va. Average velocity is calculated 

over a distance Dr as shown. The analysis here sets  = 1. 

 

 

is a factor that depends on properties of the rock (described by φr and τco*) and its placement (from the 
specified side-slope angle ), and the specified degree of safety (defined by the safety factor fs),  
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is a factor that accounts for the relative pier width given by the ratio b/Dr, and /a a aFr V gy   Froude 
number of the flow approaching the pier. The expression for Kb includes the sought-after rock diameter Dr, 
thereby necessitating an iterative solution of Eq. (7). For θ = 0

o
 (that is, for a horizontal bed),  = 90

o
, and the 

factor Kr given by Eq. (8) reduces to 
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3 FALLING APRON DESIGN 

A common technique used to guard against erosion at bridge piers is to place a supply of stone around them 
that will settle or launch down a slope to form a protective facing automatically when the stockpile is 
undermined. This method was introduced in India during the second half of the 19

th
 century when the first 

railway bridges were being built across the Ganges River and its tributaries (Bell 1890) and is called a falling 
or launching apron. A guide on how to apply the falling apron technique, which is used often to this day, was 
established based on many practical applications, as described by Spring (1903). However, the design 
approach relies on a vague notion of how bank slope coverage develops as a rock apron deploys, and they all 
lack quantitative detail. 

A mathematical model is developed here that provides a sensible, well-reasoned representation of the 
physical processes that take place as a horizontal rock apron launches in stages and then progresses down an 
eroding curved underwater slope in the shape of a conical frustum. The kinematic model will be developed 
first for falling aprons placed along the tops of straight embankments deploying onto planar underwater slopes 
following Froehlich (2009). The model will then be extended to account for the effect of curved slopes, which 
will provide a means of designing falling aprons around bridge piers. 

3.1 Planar-Slope Model Development 

Falling aprons evaluated here are horizontal blankets of loose rock riprap with a constant thickness Ta that 
launch in stages as the outer edge of the rock stockpile is undermined by an eroding riverbank (see Figure 3). 
Each launch stage results in deployment of a single layer of stone from the outer face of the apron, which has 
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length b = Ta /sin α, and a thickness D = average rock particle diameter of the riprap mixture, where α = mass 
angle of repose of the rock forming the apron. Each launch volume per unit length of the apron is then Vs = b 
×D. 
 

 

 
 

Figure 3. Stages 1 and 2 of apron launching showing the four steps (erosion, settlement, erosion, settlement). 

 

 

Movement of a launch volume down the bank slope is considered to take place in stages, and each stage is 
divided into four steps. Step A consists of lateral erosion of the exposed slope immediately below the launch 
volume by a horizontal distance D. During Step B, the launch volume settles onto the newly eroded slope just 
below it. In Step C, a second erosion episode takes place on the exposed slope below the launch volume, 
which is followed by another settlement in Step D. 

A launch volume is considered to remain continuous, having an average thickness D as it moves or settles 
down a slope. If no rock is lost through settlement, the length of a launch volume is constant and equals the 
length of the apron face b. However, each time a launch volume settles, it is likely that a portion of it becomes 
buried in the underlying soil and no longer able to protect the slope. Other stones might be swept away by 
river currents, also becoming ineffective. The fraction of a launch volume that remains after each deployment 
step (the retainage fraction) along a planar slope is denoted by k, where 0 ≤ k ≤ 1. Considering k to stay 
constant, the length of a launch volume after i stages, each with two settlement steps, is bk

2i
. 

At any stage, before the initial launch volume reaches the bottom of the slope, a channel bank is only 
partially protected. The cover consists of a series of launch volumes extending down the incline, each of 
which is separated from the subsequent stage by a gap that has a length equal to that launch volume. Bank 
soils within the openings between rock volumes are exposed and erode laterally at the same rates. This idea is 
illustrated by the second stage of apron deployment (Stage 2). 

When the initial launch volume reaches the bank toe, no further downward movement takes place if the 
channel ceases to scour. The following launch volume will then fill the intervening gap at the next settlement 
step. This process repeats for all the subsequent launch volumes until the final one deploys from the apron 
face, and the slope is covered entirely by a rock layer of average thickness D.  

The total length of slope covered completely by m launch stages is then found as 
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Figure 1. Stages 1 and 2 of apron launching showing the four steps (erosion, 

settlement, erosion, settlement). 
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where B = H ÷ sin β, and β = the initial and final bank angle, which is about 2:1 (horizontal:vertical) or 26.6
o
 

for sand streambeds. Solving Eq. (11)for the value m gives 

; for 1

1
 = ln 1

;  for 0 1
ln

k

k
m

k
k

k







    

   
   

 


 (12) 

where    sin sinaH T   is a dimensionless fall height factor. As the fraction of rock volume retained 
at each stage decreases, the number of launch stages needed to obtain complete coverage of a slope increases. 
Channel banks where conditions result in values of k less than  1mink    would never be able to be 
covered entirely by stone deployed from the apron because of losses. For this reason, k needs to exceed kmin 
by a suitable margin as a safeguard. 

The total volume of rock deployed from an apron is found by summing the separate launch volumes, 
which are the same for each stage if the apron thickness is constant as has been supposed. The ratio of the 
total amount of deployed rock to the total amount contained in the final protective bank layer Vb is then found 
as 
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where Vb = D × B = D × H ÷ sin β = volume of bank cover that is a single rock particle diameter thick. The 
relation given by Eq. (13) is graphed in Figure 4 for several values of k ranging from 0.75 to 0.975. The graph 
shows that, for a given k, the deployed stone volume increases for larger values of χ. By expanding the apron 
thickness Ta, thereby decreasing χ, the amount of stone used to cover a slope completely is reduced, which 
confirms the U.S. Army Corps of Engineers (USACE) belief that thickness of an apron is the most crucial 
design factor because it controls the rate at which rock is released in the launching process (USACE 1994, 
page 3-11). However, a thicker apron increases the vertical load acting on a bank, which increases the 
potential of bank failure by sliding. 

 

 

Table 1. Recommended values of rock retainage fraction for planar surfaces based on qualitative descriptions of bank erosion rate  

and riprap deployment uniformity.  

Bank erosion rate  Riprap deployment uniformity Rock retainage fraction kp 

Slow Uniform (even) 0.95 
Slow Slightly irregular (uneven) 0.90 
Moderate Slightly irregular 0.85 
Rapid Slightly irregular 0.80 
Rapid Highly irregular 0.75 

 

 
 

Figure 4. Graph showing relation between the ratio of deployed apron volume Vd to the volume needed to cover the eroded bank 

completely Vb as a function of the fall height parameter χ and the fraction of retained stone in a launch volume after each 

deployment step.  

Figure 4. Graph showing relation between the ratio of deployed apron volume Vd to the volume needed to cover the 
eroded bank completely Vb as a function of the fall height parameter χ and the fraction of retained stone in a launch 
volume after each deployment step. 
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From the published results of experimental studies, and from common design practice, k ranges from 0.75 to 
0.95. Smaller values of kp apply to conditions that give rise to more significant rock loss, such as uneven 
launching of stone because of the presence of cohesive soils beneath the apron, rapid erosion of the bank, the 
tendency for bank slides to occur, or the use of poorly-sorted apron stone. Larger values of kp apply where 
bank erosion takes place gradually, bank slides are not likely to happen, and well-sorted stone is used in the 
apron. Recommended values for kp based on qualitative descriptions of bank erosion rate and riprap 
deployment uniformity are summarized in Table 1. When applying Eq. (13) or Figure 4 for planar slopes set 
k = kp. 

 

 

 
 
Figure 5. Right-circular conical frustum used to evaluate lateral expansion of rock riprap deployed onto convex slopes.  

3.2 Curved Aprons around Bridge Piers 

Rock riprap falling aprons used to control erosion around bridge piers and abutments will deploy onto convex 
slopes as the riverbed scours around them. The falling apron design approach presented here for a planar slope 
surface is modified for application to the curved surfaces surrounding bridge piers and abutments. 

Around a bridge pier in the shape of a cylindrical column, the underwater slope that needs to be covered by 
rock deployed from a falling apron is not a plane but takes the form of a segment of a frustum of a right 
circular cone as shown in Figure 5. As a result, the farther down the slope a rock deployment moves, the more 
it must spread out to cover the expanding curved surface, thereby reducing the length of incline that can be 
protected at each deployment stage. The smaller the radius of curvature of a slope, the higher will be the 
amount of lateral expansion. 

Lateral expansion of stone deployed on a convex bank in effect decreases the planar slope retainage 
fraction kp. The conical frustum will be used to evaluate the effect of curved surfaces on rock apron 
deployment. Side surface area and volume of the frustum is found as 
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respectively, where h = height of the frustum, and 1 2,r r   frustum top and bottom radii. For the initial 
deployment from the face of the apron, r2 = r1 + ho ÷ tan β, where ho = the vertical distance covered by the 
initial launch. Letting r1 = Ro = the initial radius of curvature at the riprap apron toe, the initial rock volume 
deployed from the apron face, and the amount deposited on the curved slope, are calculated as 
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respectively. Equating Vdo and Vbo and solving for ho yields 
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When compared to the initial deployment height on a bank without curvature, the retainage fraction for initial 
deployment on the curved slope is k = kvkp, where 
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is the adjustment factor for convex surfaces. 
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Because the radius of curvature of the outer edge of the apron is a decreasing quantity as more of the rock is 
deployed, kv will vary as well, increasing as the bank erodes, but it will change only by a small amount from 
the initial to the final deployment for typical conditions. For this reason, kv given by Eq. (17) with ho obtained 
from Eq. (16) is considered to be a constant value for the entire falling apron deployment. When designing 
falling aprons to protect convex slopes, Eq. (13) or Figure 4 can be used with k = kvkp to obtain the ratio of the 
deployed volume of apron stone to the amount retained on the eroded bank Vr = Vd/Vb. 

 

 

     
 

Figure 6. Illustration of a rock riprap falling apron surrounding a bridge pier (a) before and (b) after deployment. 

 

 

The ability of a falling apron to spread laterally and to completely cover the eroding slopes, as shown in 
Figure 6, can be determined from Eqs. (16), (17), and (13) given the values of Ro, Ta, Dr, H, α, and β, where 
Ro = Wa + b/2 = the initial apron radius. The fall height H needs to be determined separately from an analysis 
of scour potential. The representative diameter Dr of rock riprap that will be stable on the covered slopes also 
must be calculated independently (Froehlich 2009, 2013a). 
Considering the surface to be protected by launched riprap to form a conical frustum as shown in Figure 6, the 
volume of stone deployed from the apron and the amount deposited on the curved surface of the protected bed 
surrounding the pier, are calculated as 
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respectively, where Rd = Ro – Wad. Equating the ratio of Vd and Vb by Eq. (18) to Vr from Eq. (13)and 
rearranging provides the following quadratic equation for d oR R : 
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Solving Eq. (19)for the ratio d oR R gives Wad = Ro – Rd = the deployed width of the apron. 

4 SUMMARY AND CONCLUSIONS 

A rational expression was developed for calculating the representative diameter of stable loose stone placed 
around bridge piers based mainly on potential flow theory. Stability was based on the ratio of static moments 
resisting and promoting overturning of a single rock particle, which defines a safety factor fs. A comparison of 
calculated and measured rock sizes suggests that fs = 1.25 provides an appropriate margin of error needed for 
design. 

Next, a mathematical model of the deployment of rock riprap falling aprons at bridge piers was developed 
based on a conceptual kinematic representation of apron formation. The model presents a sensible and 
realistic quantitative description of the physical processes that take place as a horizontal rock apron launches 
in stages (where each deployment of stone has a thickness equal to the average rock particle diameter) and 
then progresses down an eroding planar slope in regularly repeated processes of slope erosion followed by 
rock settlement. 

The falling apron model was extended to evaluate deployment on curved, convex underwater slopes, such 
as those around bridge piers, by considering the lateral spreading that is needed to cover the expanding 
surfaces, which are represented byconical frustums. Adequacy of the falling apron thickness, the amount of 
stone lost during deployment, and the lateral extent of bank erosion before complete slope coverage is 
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established are factors that can be assessed using the mathematical formulation developed here. The model is 
uncomplicated and can be used to design rock riprap falling aprons that protect bridge piers from scour. 
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