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1 INTRODUCTION 
Optimization is a technique used to select the best option from available alternatives, subject to certain condi-
tions. There are many different programming methods used to optimize a variety of problems.  Two that 
were used in this study are dynamic programming (DP) and linear programming (LP). DP is an approach for 
making a sequence of decisions in an optimal way. At a basic level it is taking a small part of a problem, find-
ing an optimal outcome for that small part, expanding the problem by a small amount, and solving again, until 
the expanded problem encompasses the original problem (Sniedovich 2010). By then tracing back the optimal 
decision taken at each step, the optimal decision for the whole can be found. In dynamic programming, a 
problem is generally divided into stages. Stages can be thought of as a new small problem to be solved that 
builds on the previous solution. Each stage then has a number of states, decisions and decision updates.  

On the other hand, LP is a method for optimizing a scenario that can be described mathematically by linear 
relationships. Many problems can be formulated and solved in this style of programming. One example is 
truss optimization, which utilizes LP, or in some cases network flow programming, to optimize weight or size 
or cost of the truss structure. LP is the most successful and most often used technique for solving truss prob-
lem because of its system of equations deal with member dimensions that bounds to linear domain (Li et al. 
2009; Rajeev & Krishnamoorthy 1992; & Rahami et al. 2008). The objective of this study is two-fold. One is 
to minimize the cost of a bridge by determining the optimal location of the piers. Second is to minimize the 
weight of the truss for individual spans determined in the previous step. 
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ABSTRACT: The objective of the current study is two-fold. First, minimize the cost of a bridge by determin-
ing the optimal number and location of the piers. Second, minimize the weight, size and cost of the truss for 
the individual spans determined in the prior step. There are three main categories invoke to optimize a truss 
structure, namely, sizing, shape and topology optimization. The aim of the current study is to optimize the to-
pology of a planar truss while maintaining the external force is balanced in all considered degree of freedoms 
and meeting up the Euler buckling and material strength satisfactory. Two cutting-edge optimization tech-
niques, namely, dynamic programming and linear programming were employed in this study. In one hand, 
dynamic programming is an approach for making a sequence of decisions in an optimal way for a given re-
cursive problem.  In dynamic programming, a problem is generally divided into stages that give the best out-
come based on the previous decision. On the other hand, linear programming is a method for optimizing a 
scenario that can be described mathematically by linear relationships. Results showed that the adopted strate-
gy can determine the optimal bridge configuration both in small and large scale very well. 
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2 BRIDGE SPAN OPTIMIZATION 

2.1 Dynamic Programming- Overview 
Dynamic Programming is an approach for optimizing multistage decision processes. It is based on Bellman’s 
Principle of Optimality: ‘an optimal policy has the property that, regardless of the decisions taken to enter a 
particular state in a particular stage, the remaining decisions must constitute an optimal policy for leaving that 
state’ (Sniedovich 2010).  

A multistage decision process is a process that can be separated into a number of sequential steps, or stag-
es, which may be completed in one or more ways. The options for completing the stages are called decisions. 
A policy is a sequence of decisions, one for each stage of the process. The condition of the process at a given 
stage is called the state at that stage; each decision effects a transition from the current state to a state asso-
ciated with the next stage. It is to be noted that a multistage decision process is finite if there are only a finite 
number of stages in the process and a finite number of states associated with each stage (Sniedovich 2010). 
Multistage decision processes have returns associated with each decision which vary with stages and states. 
The objective in analyzing such decision processes is to determine an optimal policy, one that results in the 
best total return. Thus, DP is a method to solve optimization problem containing a specific objective. 

2.2 Context of the Present Study 
The context of the DP part for this study is to design a bridge in terms of number of piers and pier spacing 
which minimizes the total cost. The bridge span was considered as a 1250 m length and the bedrock profile 
across the ravine at the bridge site is assumed from a river bed profile found in GoogleEarth that was located 
over Narayanganj, Bangladesh. 

The model includes both cost constraints and spatial constraints. The spatial constraints are: the bridge may 
have not more than 5 piers and no individual span may exceed 500 m. The cost constraints ensure that a min-
imum cost configuration would be chosen. Simplified cost estimating formulae are available for individual 
spans of decks and for piers. The cost of a single span is assumed proportional to the square of the span and is 
given by: 

Cost of deck span= DConst1+ DConst2*(span length)2             (1) 
where DConst1 and DConst2 are given constants as assumed a value of 20000 and 2, respectively. 
The cost of a single pier is assumed proportional to its height and is given by: 

Cost of pier= PConst1+ PConst2*(pier height)                (2) 
where PConst1 and PConst2 are given constants as assumed a value of 50000 and 11000, respectively. 

2.3 Model Assumptions 
The assumptions made during the problem formulation are largely present in the cost functions. The cost 
coefficients determine how the model chooses the most economical pier locations because of the weights as-
signed to pier depth and span length. Changing these would have been a significant impact on the result ob-
tained. The choice of limit for the span length to 500 m is another scope of the study, ergo a shorter maximum 
length would end up with a different pier configuration result. 

2.4 Define stages and Stage Numbering 
A stage was consisted of one deck span and the supporting pier at the left hand (LH) end of this span. Stage 
numbering was considered from left to right with the left hand abutment included in stage 1 and the right 
hand (RH) abutment included in stage 7 (Fig. 1a). 

2.5 Define States 
State for a stage was considered a positive center line location for a pier and was noted from RH abutment. In 
this way, an interval of 50 m was assumed between discrete state values. For example, State 1 would corres-
pond to the location of the RH abutment. State 21 (at 1000 m from RH) will correspond to the location of the 
LH abutment (Fig. 1a). 

2.6 Define Decision Variable 
At a particular stage and state, i.e. for a given pier and center line location, the decision choice would be the 
length of span to the next pier to the right (Fig. 1a). 



314 
 

2.7 State Transformation Equation 
Given a state and a decision (i.e. span to the next pier to the right), state transformation equation would be the 
span length resulting from the difference between state (section 2.5) and decision variable (section 2.6). 

2.8 Stage Return Function 
One stage cost will be the sum of the pier cost and deck cost. The minimum cost in a state would be the deci-
sion of that particular stage. 

2.9 Recursion Equation 
The same formulation is adopted for all of the stages started from Stage 7 to Stage 1. 
  

 
 
Figure 1. a) Problem definition and optimal locations for piers according to the DP model, b) DP optimized pier location 

2.10 DP Result 
The dynamic programming model yielded a two-pier bridge as the optimal result, with the piers located at x = 
250 m and x = 750 m (Figure 1b). Given the profile of the river bed, there are no obviously shallow locations 
to place piers that minimize pier height, so the result has been dominated by span length and an attempt to 
have as few piers as possible. This meant the optimal spans measured 300 m, 200 m and 500 m, again from 
right to left. The decision makes sense, because the deeper sections of the river are associated with higher 
costs because of pier height. The model has therefore chosen to place one pier at the maximum possible span 
length to avoid having piers in the deepest part of the river and then has chosen a balance between span cost 
and pier cost to place the second pier. 

3 PLANAR TRUSS OPTIMIZATION 

There are three main categories invoke to optimize a truss structure: 
i. Shape optimization (variables are nodal coordinates) 

ii. Sizing optimization (variables are cross-sectional areas of the members) and  
iii. Topology optimization (variables are the location of links in which connect nodes). 

 
The aim of this study is to do topology optimization.  In this section the application of LP for optimization of 
planar truss has been discussed. A generalized model which could be extended to any configuration has been 
modelled in a programming language, namely, AMPL (Applied Mathematical Programming Language). The 
model set up was first validated for a simple truss configuration. This was later extended to optimize a large 
scale truss problem. 
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3.1 LP Problem Formulation 
Then definition of the structural analysis problem to solve the truss structure by LP is described as follows 
(Ghasemi et al. 1997; Li et al. 2009; Rajeev & Krishnamoorthy 1992; Rahami et al. 2008; & Rasmussen & 
Stolpe 2008). 
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3.2 Example Problem 
Working of the model has been discussed in this section with the help of a simple configuration.  

i. A grid system was considered as illustrated in Figure 2a. There are 7 nodes starting from 0 to 6 
along x direction and 5 nodes starting from 0 to 4 along y direction. Each node is equally spaced at a 
distance of 1m apart. 

ii. A load of 25 kN is applied at Point P (3, 0). The configuration is arrived on such that the truss is 
simple supported at nodes of (0, 0) and (6, 0). 

iii. The material properties of the members are considered as follows: modulus of elasticity, E=2x105 
N/mm2, density = 78.89 kg/m3 and maximum allowable stress =250 N/mm2. 

iv. Arcs are defined such that the nodes are connected in all possible ways (Fig. 2b). 
v. No force balance equation was applied at anchored joints. 

3.3 Objective Function 
The objective of this LP formulation is to minimize the weight of the structure and arrive on an optimal con-
figuration with the area of cross-section for the members being used (Equation 10). Since the force depends 
on the area of cross-section, the objective function is defined as minimizing the total absolute force. 
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3.4 Constraints 
The constraints for the optimization are 

i. Satisfy the equilibrium equation that is sum of forces along x direction at every node should be zero 
(Equation 11).  Similarly the sum of the forces along y direction should be zero. 

ii. An additional constraint is added such that the critical member size does not go beyond 1000 mm2 
due to have material’s physical limit. 

iii. Forces of the members would be governed by the stability of member relating to Euler buckling 
(Equation 12) and strength of the material up to elastic stage. 

 

 
 
 
Figure 2. a) Node definition and b) search domain 

3.5 LP Result 
Figure 3 shows the structure that is obtained after optimization algorithm runs. The results obtained are tabu-
lated in Table 1. The first two columns shows the starting node of each member and the third and fourth col-
umn shows the end node of each member. The fifth column gives the force in each member connecting the 
two nodes. 

 
Figure 3. Optimal truss configuration within nodes boundary (6 x 4) 

3.6 Model Assumptions 
i. Decision variables that is the cross section are of the truss members are continuous. 

ii. The truss was considered having simply supported boundary conditions. 

a)                                                            (b)                              
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3.7 Pros of the Model 
i. The model is simple and easy to use. The user is required to specify the coordinates for load and 

support conditions. 
ii. The model is capable to handle complex and large structural problems without losing accuracy 

and/or demanding more computational power. 

3.8 Cons of the Model 
i. Since the cross-sections are considered as continuous, the model might not the precise representation 

for a real case scenario. 
ii. The LP problem solved based on simple supported truss configuration. This cannot be used for 

structures that are not simply supported. 
iii. The truss design problem that we have formulated presumes that the truss structure itself is not af-

fected by its own weight. 
 
Table 1.  Bar forces in the optimized truss structure. 

Node1 Node2 Force in Members 
(kN) x y x y 

1 0 0 0 6.25 
1 2 0 0 -13.97 
2 0 1 0 6.25 
2 1 1 2 8.83 
3 0 2 0 6.25 
3 0 2 1 8.83 
3 1 3 0 12.5 
3 2 3 1 12.5 
3 3 1 2 -13.97 
3 3 3 2 12.5 
4 0 3 0 6.25 
4 1 3 0 8.83 
5 0 4 0 6.25 
5 2 3 3 -13.97 
5 2 4 1 8.83 
6 0 5 0 6.25 
6 0 5 2 -13.97 

4 CONCLUSIONS 
The study was investigated the optimum number of piers and pier spacing which minimizes the total cost of a 
bridge construction. The dynamic programming model was yielded a two-pier bridge as the optimal result. In 
DP formulation the cost function for piers considers only the height. A more realistic cost function would 
have a term relating span length to pier diameter and consequently would effect on cost behavior. As a fol-
low-up step, the application of linear programming for optimization of planar truss suited for the span length 
determined by DP has been discussed in this study. A generalized LP model which could be extended to any 
configuration has been modelled in a programming language, namely, AMPL. Results showed that the 
adopted strategy can determine the optimal bridge configuration both in small and large scale very efficiently 
in terms of computational cost and accuracy. 
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