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ABSTRACT: A displacement estimation method for nonlinear SDOF system under seismic excitation is pro-
posed based on Extended Kalman filter (EKF) and parameter optimization. Time interval where system expe-
riences significant nonlinearity or not is firstly distinguished. For time period when system is in elastic phase, 
available observations for EKF are acceleration, double integrated displacement and residual displacement 
value. During time period with significant nonlinearity, acceleration is only employed as observation and a bi-
linear hysteresis model is assumed in this part to estimate displacement using EKF. The results are further 
smoothed by Extended Kalman smoother (EKS). The proposed method is numerically verified using a SDOF 
system with bi-linear hysteresis model and further validated through an E-defense experiment. The estimated 
displacements from both numerical examples and experiment present good accuracies. 

1 INTRODUCTION 

Displacement response is an important indicator reflecting structural health condition after an earthquake ex-
citation. For example, inter-story drift ratio (IDR) (Shodja et al. 2014)), defined as inter-story drift normalized 
by story height is used as judgment criterion on buildings; hysteresis loop of a SDOF system which can be 
presented as displacement versus inertial force, contains energy dissipation information of the system (Kuleli 
2018). Besides, in the context of system identification, displacement measurements are preferred because 
consistent stiffness identification results may not be easily obtained by observing only accelerations as re-
ported by Chatzis et al. 2015. Generally, displacement measurements would be more beneficial in the field of 
structural health monitoring (SHM). 

Measuring structural displacement is usually a challenging task in practice. Since displacement is a relative 
physical quantity, a stationary platform is needed for contact displacement sensors, e.g. LVDT. The sensors 
might work well in indoor environment, but difficulty in finding reliable platform can become a significant 
obstacle for on-site applications. Non-contact technologies, such as global positioning systems (GPS), are al-
ternatives. However, drawbacks of most of them include but not limited to high equipment cost, low sampling 
frequency, and low resolution. A comprehensive review of various inter-story displacement measurement 
techniques is found in (Skolnik et al. 2010). Compared to displacement transducer, accelerometer is prefera-
ble in practice considering its advantages such as high sampling frequency, robustness, and ease of deploy-
ment. By double integrating acceleration signals and applying baseline correction and appropriate high pass 
filter, reasonable displacement can be obtained (Yang et al. 2006). Besides, novel displacement estimation 
methods using acceleration measurement have been developed (Lee et al. 2010) and applied to wireless dis-
placement measurement system (Park et al. 2013). The acceleration integration based methods perform well 
in terms of linear system case, e.g. within 1%~ 4% errors at peak displacement prediction in inter-story drift 
as reported in (Skolnik et al. 2010). However, due to the effect of high pass filter, they cannot be applied to 
system undergoing nonlinear deformations since low frequency drift component including residual displace-
ment are inevitably removed. 

In this paper, an Extended Kalman filter (EKF) based displacement estimation method is proposed for non-
linear SDOF system under seismic excitation. Acceleration and residual displacement are utilized. From a 
forward simulation point of view, residual displacement is sensitive to nonlinear system parameters, e.g. post-
yielding stiffness ratio α in bi-linear model studied by Kawashima et al. 1998. It indicates that estimation of 
residual displacement may not be implemented easily in practice. Therefore, the residual displacement is as-
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sumed as known in this study, which could be obtained from inclinometers in practice (Nagayama et al. 
2017).  

In the proposed method, firstly, time-intervals of responses with and without significant system nonlineari-
ty are distinguished based on a time-variant parameter estimation method (Kuleli et al. 2020). For time period 
without nonlinearity, e.g. the beginning and end parts of time history, observations in EKF include accelera-
tion and displacement which is obtained by combining double integrated and high pass-filtered displacement 
and residual displacement. During time interval with significant nonlinearity, only acceleration is used as 
measurement. In order to consider the nonlinearity, a bi-linear hysteresis model is assumed and its model pa-
rameters are optimized by genetic algorithm (GA). The result from EKF is further smoothed by Extended 
Kalman smoother(EKS). In following, the displacement estimation method is presented in section 2 in detail. 
In section 3, the proposed method is numerically verified with a SDOF system with bi-linear hysteresis mod-
el. In section 4, a bridge pier shaking table experiment from E-defense database is used to validate the me-
thod. Finally, conclusion is given in section 5. 

2 DISPLACEMENT ESTIMATION METHOD 

2.1 Equation of Motion and State Space Model 

The equation of motion (EOM) of a nonlinear SDOF system under seismic excitation in relative coordinate is 
written as 

 , gmx cx f x x mu        (1) 

in which x , x and x are vectors of displacement, velocity and acceleration respectively; m and care mass and 
damping coefficient; f represents nonlinear restoring force as a function of x and x , and determines hysteresis 
rule of loading and unloading; gu is input ground acceleration. The incremental formulation is written as 

T gm x c x k x m u           (2) 

in which Δ stands for incremental value and kT is tangential stiffness for each time instance. Usually, equation 
(2) is solved by numerical integration algorithm in a step by step manner; using incremental New mark-β me-
thod, the equation is transformed into a discrete state space model as  
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in which β and δ are integration parameters of the algorithm which are set as 1/6 and 1/2 in this study; I is the 
unit matrix; k stands for a specific time instant, L matrix is defined as below 
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kd is equivalent dynamic stiffness which is calculated as  
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This state space model is different from commonly used one where only displacement and velocity variables 
are included in the state vector. In the commonly used state space model, dynamic equilibrium is exerted im-
plicitly on every point according to its integration algorithm. Because of that, the state space model can only 
estimate displacements of a linear elastic system. However, dynamic equilibrium is not enforced in the state 
space model of equation (3), thus it can be applied to displacement estimation of a nonlinear system. 

In this study, if necessary, parameters can also be identified by augmenting them in the state vector. Spe-
cifically, the augmented state vector, system equation, and observation equation in EKF are written as  
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      1 1 1ak k k    y h X v  (8) 

f function is basically the extension of equation (3) with parameters augmented; h can be a simple selection 
matrix containing only 0 or 1; w(k) and ν(k) are process and measurement noise vector consisting of uncorre-
lated zero mean noise.  

Suppose  ˆ /a k kX  and  /k kP  are estimated value and error covariance matrix of state vector at k in-
stant based on measurements from 1 to k instants. The EKF firstly calculates a prior estimation and cova-
riance matrix of state vector at k+1 instant based on system equation (7). 

    ˆ ˆ1/ / ,a a gk k k k u  X f X  (9) 

         1/ / Tk k k k k k k  P F P F Q  (10) 

Combining the information from observation equation(8), the estimation and covariance matrix of state vector 
at k+1 instant can be obtained  
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In the formulation above, G(k) is the so called Kalman filter gain matrix and Py(k+1/k) is prior estimation of 
observation covariance matrix 
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F(k) and H(k+1) are Jacobian matrices of function f and h respectively 
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Q(k) and R(k+1) are the process and measurement noise covariance matrices respectively 
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The aforementioned procedures are conducted recursively, regarding estimation of previous instant as initial 
value for current instant. 

2.2 RM Algorithm for Process Noise Adaption 

The R matrix in equation 16 can be decided beforehand, because it is usually related to sensor noise. As for Q 
matrix which actually reflects error of system equation (7) in EKF, a trial and error manner is usually used to 
tune the value which is time-consuming and subjective. Robbins-Monro stochastic approximation method is 
originally an algorithm to find root of function which may not be computed directly but estimated from noisy 
observations (Robbins et al. 1951). Estimation of Q matrix using RM method can be formulated as below 

         +1 1 1 1
T

Q Qk k k k     Q Q d d  (16) 

     ˆ ˆ1 1/ 1 1/a ak k k k k     d X X  (17) 

in which Q(k+1) and Q(k) are the process noise covariance matrix of next step and current step respectively; 
d(k+1) is the so called state innovation vector. The Q(k+1) matrix is further constrained to have a diagonal 
form assuming the process noise is uncorrelated. αQ is a small positive value chosen between 0 and 1, served 
as a forgetting factor to average estimation of Q over a period of time.  

Based on the RM algorithm, time-variant parameters can be identified as reported in Kuleli et al. 2020. In 
the following, the combination of EKF and RM algorithm is referred as EKF-RM method. 
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2.3 Observation Scheme 

Accelerations are, in practice, the most easily accessible system responses. Based on acceleration measure-
ment, displacement without low frequency drift can be obtained by double integration and high-pass filtering. 
Therefore, the true displacement can be obtained as the combination of double integrated displacement and a 
low frequency drift component. Figure 1 shows the displacement decomposition. 
 

 

 
 

Figure 1. Displacement decomposition. 

 

 

Because the system under earthquake behave as a linear system when the excitation level is small at the be-
ginning and end of the excitation, double integrated displacement can reproduce the true displacement in 
these linear sections except for the constant component, i.e. residual displacement component. In the middle 
part, e.g. 10~20s in the figure above, because of employment of high-pass filter, double integrated displace-
ment differs from the true one significantly. 

The residual displacement in this study is assumed as known value; in practice, it can be estimated by in-
clinometer indirectly. Therefore, the available observation information for displacement estimation includes 
displacement values at the beginning and end and acceleration signal. The displacements in the linear ranges 
are obtained by combining double integrated displacement and initial and residual displacement. In order to 
estimate the nonlinear part of displacement, a virtual displacement observation as shown in Figure 2, i.e. a 
straight line connecting the two sides, is assumed. The virtual displacement possesses large uncertainties due 
to the assumption. This method was firstly proposed by Chatzi et al. 2015 for linear displacement estimation 
using only acceleration to suppress displacement divergence. Figure 2shows the available observation infor-
mation in the following steps of EKF and EKS. 

One remaining problem is how to define the time interval where the virtual displacement should be ap-
plied. This time interval is determined by identifying the time-variant parameters k and c of the system based 
on EKF-RM method using double integrated displacement. Note that the commonly used state space model 
rather than the incremental New mark-β state space model explained in equation (3) is employed in the EKF-
RM method in this parameter identification. While the parameters may not be very accurate especially during 
the strong nonlinearity part, the time interval with significant stiffness reduction is defined as the part of vir-
tual displacement observation. It will be demonstrated with a numerical example in the following section. 
 

  
 

(a) (b) 

Figure 2. Available observations (a) displacement (b) acceleration. 
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2.4 Estimation Scheme during Virtual Displacement Observation Part 

In order to consider the nonlinearity during the virtual displacement part, a specific hysteresis model is as-
sumed, e.g. bi-linear model. If, in ideal case, the hysteresis model and its corresponding parameters are accu-
rate, displacement can be accurately estimated using ground acceleration measurement only. In case the as-
sumed hysteresis model is different from the real model, an approximate one can be obtained by optimizing 
parameters of the assumed hysteresis model. In this study, bi-linear model is employed because the model 
possesses only a few model parameters making the optimization practical. In terms of the elastic stiffness k 
and damping factor c, appropriate values can be determined from previous step, i.e. when time interval with 
virtual displacement is defined. Specifically, the identified value in the ending part, i.e. elastic phase, can be 
used. Therefore, only yielding displacement dy and post-yielding stiffness ratio α need to be obtained. The 
following fitness function is proposed to optimize these parameters: 
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in which Qaccl stands for acceleration process noise variance at the time instant k given parameters dy and α; 
kt0 and kt1are the time steps at the start and end of the virtual displacement. Thus, the basic idea is to find ap-
propriate parameters by minimizing the acceleration process noise variance which indicates model error. The 
EKF-RM method is applied and the acceleration process noise is obtained. With the optimized parameters, 
displacement is finally estimated using the EKF-RM method again.  

The differences between EKF-RM method used here from one used in determining virtual displacement in-
terval include: 1) the incremental New mark-β state vector is employed in EKF-RM method here while non-
incremental state vector is applied to determine virtual displacement interval; 2) the incremental New mark-β 
state vector contains system responses only, i.e. dy and α parameters are decoupled and not identified along 
with responses while parameters, i.e. k and c, are included in the state vector when the virtual displacement 
period is determined. 

2.5 Extended Kalman Smoother 

As mentioned in the last section,  ˆ /a k kX  is the estimated value of state vector based on measurement in-
formation up to k instant, i.e. 

1~ky . In order to utilize measurements of all time instants, especially the signals 
in the latter parts including residual displacement, EKS based on Rauch-Tung-Striebel smoothing (Rauch et 
al. 1965)is applied to the outcome of EKF. With the estimated values and error-covariance of state vector at 
the ending point, i.e.  ˆ /a N NX and  /N NP , the output of the smoother at k instant (k=N-1, N-2,…, 1) is 
written as 

     1 1/ 1 / 1T
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in which N stands for the total number of time samples; J is gain matrix of the Kalman smoother; all other 
symbols are the same as those in section 2.1. 

Smoother outputs are more accurate than those from the filter, as shown in the following. Thus after apply-
ing EKF-RM method, the estimated result is further smoothed by EKS. Overall, Figure 3 shows the flow chart 
of the displacement estimation method. 

3 NUMERICAL VERIFICATION OF THE DISPLACEMENT ESTIMATION METHOD 

The illustrative model considered here is a SDOF system with bi-linear hysteresis model. The prototype of the 
model is simplified from a full scale bridge pier experiment, called C-1-1 experiment in E-defense shaking 
database (ASEBI 2020), as shown in the figure below. The basic parameters of the SDOF model includes 
mass m=252.5 ton, elastic stiffness k=1.625×107 N/m, damping coefficient c=4.05×104 Ns/m, post-yielding 
stiffness ratio α=0.05, and yielding displacement dy = 0.05m. 
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Figure 3. Flow chart of displacement estimation. 

 

 
 

(a) 

 
 

(b) 

Figure 4. (a) C1-1 prototype experiment structure (b) simplified bi-linear SDOF model. 

 

 

 

(a) 

 
(b) (d) 

 
 

 
 

(c) (e)  

Figure 5. Bi-linear model simulation response; (a) earthquake acceleration (b) displacement (c) acceleration (d) hysteresis loop (e) 

double integrated displacement and low frequency drift.  
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The forward analysis is conduct using incremental Newmark-β method with β=1/6 and the time interval 
equals to 0.005s. Northridge earthquake acceleration is treated as excitation. The simulated displacement, ac-
celeration, hysteresis loop as well as the earthquake signal is shown in Figure 5. The simulated acceleration 
signal is then added with white noise process whose RMS equals to 5% of that of signal (1.2m/s

2
) to consider 

practical measurement noise. Based on the noisy acceleration, double integrated displacement is obtained by 
using a high-pass filter with 0.2Hz cutoff frequency. Figure 5 (e) shows the double integrated displacement 
and low frequency displacement drift, i.e. difference between integrated and true displacement. In this case, 
the residual displacement occurs from about 22s with 2.3cm. Subsequently time-variant stiffness value can be 
identified using the integrated displacement and acceleration. R matrix and initial Q is set as R=diag([10

-

5
,5×10

-3
]) and Q= diag([10

-6
,10

-4
,0,0]); initial parameter value and error covariance matrix are set 1.0θreal and 

diag([0.1θreal]
2
) where θreal stands for real elastic parameter vector. Besides, the αQ coefficient of RM algo-

rithm is set as 1/15. The period of time of estimation is shown in Figure 5 (a). The identified time-variant pa-
rameter time histories are shown in Figure 6. By using the integrated displacement, the time-variant parame-
ters are identified based on normal state space model, i.e. equivalent stiffness and damping coefficient of 
nonlinear system are identified rather than tangential ones. Except the fluctuation during the initial time, sig-
nificant stiffness reduction occurs between 4~15s which matches with the time interval of significant low fre-
quency drift well as shown in Figure 7(a). For the latter part of the identification, e.g. after 15s, the identified 
parameters coincide with those true elastic parameter values well. 
 

 

 
 

 
 

(a) (b) 

Figure 6. Time-variant parameter estimation time history (a) stiffness (b) damping factor. 

 

 
 

 
 

(a) (b) 

Figure 7. (a) Integrated displacement (b) displacement observation.  

 

 

Based on the identification results, the time interval with virtual displacement is defined from 3.09s to 15.7s. 
The latter part of integrated displacement is summed with residual displacement, i.e. 2.3cm. The displacement 
observation is shown in Figure 7(b).In this study, the measurement noise value of virtual displacement is se-
lected based on the maximum value of integrated displacement. Specifically, 0.10m is employed in this case 
because the maximum value of integrated displacement is about 0.09m as shown in Figure 7(a).For the inte-
grated displacement part, the measurement noise used in time-variant parameter identification can be applied. 
However, since the integrated displacement cannot match the real displacement perfectly, e.g. during the ini-
tial period of time, a relatively large noise value could be employed for the displacement component of the R 
matrix in order to estimate more accurate displacement result. In this case, it is selected as 0.01m. Therefore, 
in following displacement estimation, R matrix is set as diag([10

-2
,5×10

-3
]) and diag([10

-4
,5×10

-3
]) for the vir-

tual displacement and integrated displacement part respectively. Other computation parameters remain un-
changed. 

The parameters to be determined is yielding displacement dy and post-yielding stiffness ratio α. In terms of 
the fitness function equation (18), the computation interval is set same as virtual displacement interval, i.e. 
3.09s~15.7s. The genetic algorithm (GA) is applied here to find optimized values.  

First of all, acceleration process noise Qaccl computed using true dy and α value (dy=0.05, α=0.05) and a set 
of wrong values (dy=0.03, α=0.03) are compared in Figure 8. The acceleration process noise corresponding to 
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true parameter value is indeed smaller than that of wrong parameters especially during the time interval with 
virtual displacement. Thus the Qaccl is sensitive to the two parameters, and it is reasonable to regard Qaccl as 
the fitness function for GA. 
 

 

 
 

Figure 8. Comparison of acceleration process noise.  

 

 

Before conducting GA, it is required to set the identification parameter ranges. Here it is proposed to define 
them based on the double integrated displacement. The hysteresis loop is plot in Figure 9(a). Since the true 
hysteresis loop here is a bi-linear model, the double integrated displacement loop is clear and close to the true 
loop. Parameter dy and α can be easily determined from the thick dashed lines in the figure. However, rela-
tively wide ranges of parameters are defined as 0.01≤dy≤0.10 and 0.03≤α≤0.08 based on them so as to consid-
er more uncertain condition in practice. In the GA computation, 20 generations of30 populations are consi-
dered. The total computation time is about 20 minutes in a standard laptop PC and Figure 9(b) shows the 
convergence plot of GA. The optimized dy and α value are 0.050 and 0.0449 respectively. Based on the opti-
mized values, the estimated displacement is shown in Figure 10. 
 

 

  
 

(a) (b) 

Figure 9. (a) Comparison between real and double integrated displacement hysteresis loop (b) convergence plot of GA. 

 

  
 

(a) (b) 

Figure 10. Estimated displacement (a) comparison between estimated and real displacement (b) estimation error comparison. 
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Figure 10(a) shows that the estimated displacement almost coincides with the real one. In Figure 10(b), the 
maximum errors of EKF and EKS are both smaller than 5mm, and the errors at maximum displacement are 
0.5mm and 2mmfor EKF and EKS respectively. Overall, the accuracy of EKS is higher than EKF since there 
is almost no error after around 12s in EKS signal.  

4 EXPERIMENT VALIDATION OF THE DISPLACEMENT ESTIMATION METHOD 

The C1-1 bridge pier experiment introduced in last section is employed here (ASEBI 2020).By simplifying it 
into a SDOF model, the displacement on the top of the pier cap is to be estimated. The equivalent concentra-
tion mass is 252.5 ton. Specifically, the north-south (NS) direction of the experiment under Takatori100%1 
excitation case is analyzed here. A group of wave forms, i.e. earthquake excitation, relative displacement and 
relative acceleration, in the case are shown in Figure 11.The residual displacement is -1.8cm and the sampling 
frequency is 200Hz. 

 

 

   
 

(a) (b) (c) 

Figure 11. Takatori100%1 NS case (a) earthquake acceleration (b) relative displacement (c) relative acceleration. 

 

 

In the first place, the acceleration is used to obtain double integrated displacement; the integrate displacement 
as well as corresponding low frequency drift part is presented in Figure 12 for the estimation time interval as 
shown in Figure 11(a). Based on the integrated displacement and acceleration, time-variant parameters of the 
SDOF system are identified. In this step, the R matrix and initial Q matrix is set as R= diag([5×10

-6,
10

-2
]) 

(corresponding to displacement and acceleration measurement noise) and Q= diag([10
-6

,10
-4

,0,0]); the αQ val-
ue of RM algorithm is set as 1/15. The time-variant parameter results are shown in Figure 13. Stiffness reduc-
tion period mainly occurs between 3~15s. For the latter part of the identification, i.e. after 15s, the stiffness 
and damping factor are stable which are about 1.28×10

7
N/m and 3.0×10

5
Ns/m respectively. 

 

 

  
 

(a) (b) 

Figure 12. (a) True displacement (b) double integrated displacement and low frequency drift. 

 

  
 

(a) (b) 

Figure 13. (a) Time-variant stiffness value (b) time-variant damping factor value. 
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The time interval with virtual displacement is defined from 2.66s to 15.61s. Combing with residual displace-
ment -1.8cm in the latter part, the displacement observation is established and shown in Figure 14(a). The 
measurement noise for the virtual displacement is set as 0.15m.In the following displacement estimation, the 
R matrix is set as diag([0.0225, 10

-2
]) and diag([5×10

-5
, 10

-2
]) for the virtual displacement and integrated dis-

placement part respectively. Other computation parameters remain unchanged. 
Subsequently, bi-linear model parameter dy and α are optimized using GA. The range of them is defined 

based on the thick dashed line in Figure 14(b). Here, the range is defined as 0.02≤dy≤0.05 and 0.3≤α≤0.8 
and the final optimized dy and α values are 0.0492 and 0.5136 respectively. Based on these values, the dis-
placement is estimated which is shown in Figure 15. Since the hysteresis loop is not close to bi-linear model, 
the result from EKF is actually not accurate, i.e. maximum error is about 6cm; however, by applying the EKS, 
the estimate displacement becomes much more accurate in which the maximum error is only about 9mm. 
 

 

 
 

 
 

(a) (b) 

Figure 14. (a) Displacement observation (b) hysteresis loop of double integrated displacement. 

 

  
 

(a) (b) 

Figure 15. Displacement estimation results of Takatori100%1 NS case (a) estimated displacement (b) displacement error. 

5 CONCLUSIONS 

In this paper, a displacement estimation method is proposed for nonlinear SDOF system under seismic excita-
tion using EKF and parameter optimization. With acceleration measurement, double integrated displacement, 
and residual displacement value regarded as known, displacement signal during significant system nonlineari-
ty is estimated assuming a bi-linear hysteresis model in EKF and further smoothed using EKS. The effective-
ness of the proposed method is verified through a numerical bi-linear SDOF model and a bridge pier experi-
ment. The estimated displacements present good accuracies.  
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